CHEM-457 PS1 Solutions

1.

2.

MF\&T \#2.9
a.
$3 p_{z}$

$4 d_{x z}$

b.

c.
$3 p_{z}$

MF\&T \#2.9

a.

		$\left(1 s^{2}\right)$	$\left(2 s^{2} 2 p^{6}\right)$	$\left(3 s^{2} 3 p^{\prime \prime}\right)$	Z^{*}	r
		,	0.85	0.35		
P		- (2 \times	$+8 \times 0.8$	$+4 \times 0.35)=$	4.8	106 pm
S		- (2 \times	$+8 \times 0.8$	$+5 \times 0.35)=$	5.45	102 pm
Cl		- (2 \times	$+8 \times 0.8$	$+6 \times 0.35)=$	6.1	99 pm
Ar		- (2×	$+8 \times 0.8$	$+7 \times 0.35)=$	6.75	98 pm

The size of the atoms decreases slightly as Z increases, even though the number of electrons in the atom increases, because Z^{*} increases and draws the electrons closer. Ar has the strongest attraction between the nucleus and the $3 p$ electron, and the smallest radius.
b.

These values increase directly with Z, and parallel the decrease in ionic size. Increasing nuclear charge results in decreasing size for these isoelectronic ions, although the change between F^{-}and Na^{+}is smaller than might be expected.
c. $\quad \mathrm{Cu} \quad\left(1 s^{2}\right)\left(2 s^{2} 2 p^{6}\right) \quad\left(3 s^{2} 3 p^{6}\right) \quad\left(3 d^{10}\right)\left(4 s^{1}\right)$

$$
\begin{array}{llll}
4 s & S=2+8+(8 \times 0.85)+(10 \times 0.85)= & 25.3 & Z^{*}=29-25.3=3.7 \\
3 d & S=2+8+(8 \times 1.00)+(9 \times 0.35)= & 21.15 & Z^{*}=29-21.15=7.85
\end{array}
$$

The $3 d$ electron has a much larger effective nuclear charge and is held more tightly; the $4 s$ electron is therefore the first removed on ionization.
d.

$$
\begin{aligned}
& \left(1 s^{2}\right)\left(2 s^{2} 2 p^{6}\right)\left(3 s^{2} 3 p^{6}\right)\left(3 d^{10}\right)\left(4 s^{2} 4 p^{6}\right)\left(4 d^{10}\right)\left(4 f^{7}\right) \\
& \mathrm{Ce} S=2+8+8+10+8+10=46 \\
& {[\mathrm{Xe}] 6 s^{2} 4 f^{2} 5 d^{1} \quad 4 f^{d} \quad Z^{*}=58-46=12} \\
& \operatorname{Pr} S=2+8+8+10+8+10+(2 \times 0.35)=46.7 \\
& {[\mathrm{Xe}] 6 s^{2} 4 f^{3} \quad 4 f^{3} \quad Z^{*}=59-46.7=12.3} \\
& \text { Nd } S=2+8+8+10+8+10+(3 \times 0.35)=47.05 \\
& {[\mathrm{Xe}] 6 s^{2} 4 f^{4}} \\
& 4 f^{4} \quad Z^{*}=60-47.05=12.95
\end{aligned}
$$

The outermost electrons experience an increasing Z^{*}, and are therefore drawn in to slightly closer distances with increasing Z and Z^{*}.
3.

Electron Affinities $\left(M+e^{-} \rightarrow m^{-}\right)$are usually negative. If an element has less electron afforsty, the incoming $e^{- \text {feels a lower }} z^{k}+$ the axothermicity is reduced, which makes the value closer to zero. For K, the mooing e^{-}will occupy the $4 s$ orbital when it will experience a hoy ha z^{k} because it is not shelled well by the other $3 s e^{-}$. For $C a, 4 s$ is $f_{l} l l$ so the incoming e^{-}will enter to which i_{s} well shielded by 45 . \therefore Despite the general trued of ruceased EA accross a period, Ca stauld exhibit a lower EA than Na .
4.

$$
\begin{array}{ccc}
\underline{L} 1 & 111 & -111 \\
0 \times \pi_{c} & 0 \times \pi_{c} & 1 \times \pi_{c} \\
1 \times \pi_{e} & 3 \times \pi_{e} & 0 \times \pi_{e} \\
& \uparrow & \\
& \text { Ground State Configuration. }
\end{array}
$$

5.

Phosphorus should have a high IE for 3 reasons:
(1) Decrease of π_{e} upon P oxidation
(2) Increase of π_{e} upon S oxidation
(3) Elimination of π_{c} upon S oxidation
$p 111$

$$
\downarrow^{-e^{-}}
$$

$$
S 11 \frac{1}{\downarrow-e^{-}}
$$

11

$$
111
$$

6.

$$
\stackrel{\leftarrow}{C-S i} \quad \stackrel{+}{C-N}
$$

$$
\begin{array}{llll}
2.5 & 1.9 & 2.5 & 3.0
\end{array}
$$

$$
2.5 \quad 2.4
$$

$$
\begin{array}{ccc}
\mathrm{R}_{n}-\mathrm{O}_{5} & \mathrm{~F}-\mathrm{Si}_{i} & \mathrm{~N}-\mathrm{Br}_{r} \\
2.3 & 2.2 & 4.01 .9
\end{array} \quad 3.02 .8
$$

